Arithmetic Series: The sum of the terms of an arithmentic sequence.
Sequence: $3,7,11,15,19, \ldots$
Series: $3+7+11+15+19+\ldots$

Investigate: Find the sum of $\frac{5}{1+2+\frac{101}{2+4+\ldots+97+98+99+100}} 101$
$\frac{101}{2}(101)=50(101)=5050$

Ex. Find the sum of the first 20 terms of $7+11+15+\ldots$

$$
\begin{aligned}
& a=7 \\
& d=4 \\
& \text { (1) } t_{20}=a+(n-1) d \\
& =7+19(4) \\
& n=20 \\
& =7+76 \\
& =83 \\
& \text { (2) } S_{20}=\frac{20}{2}(7+83) \text { last term } \\
& =10(90) \\
& =900
\end{aligned}
$$

Note: we could also use the formula $\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+\mathrm{d}(\mathrm{n}-1)]$ - Use if we know: $\mathrm{n}, \mathrm{a}, \mathrm{d}$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a+t_{n}\right) \\
& =\frac{n}{2}[a+a+(n-1) d] \\
& =\frac{n}{\partial}[2 a+(n-1) d] \\
& =\frac{n}{2}[2 a+d(n-1)]
\end{aligned}
$$

Ex. Find the sum of $7+14+21+\ldots .+266$

$$
\begin{aligned}
& \mathrm{a}=7 \\
& \mathrm{n}=? \\
& \mathrm{t}_{\mathrm{n}}=266 \\
& \mathrm{~d}=7
\end{aligned}
$$

$$
\begin{align*}
266 & =7+(n-1) 7 \tag{1}\\
266 & =7+7 n-7 \\
\frac{266}{7} & =7 n \\
38 & =n
\end{align*}
$$

Ex. If $\mathrm{a}=-6, \mathrm{t}_{\mathrm{n}}=21$ and $\mathrm{S}_{\mathrm{n}}=75$, determine n .

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a+t_{1}\right) \\
& 75=\frac{n}{2}(-6+21) \\
& 2 \cdot 75=\frac{n}{2}(15) \cdot 2 \\
& \frac{75}{15}=\frac{15 n}{15} \quad \Rightarrow \quad n=10
\end{aligned}
$$

Ex. Dominoes are displayed in an arithmetic sequence. The first row has 4 dominoes, the last row has 106 dominoes, and there are 1925 dominoes in total. Find the number of rows of dominoes.

$$
\begin{aligned}
& a=4 \\
& t_{n}=106 \\
& s_{n}=1925
\end{aligned}
$$

$$
\begin{aligned}
1925 & =\frac{n}{2}(4+106) \\
2 \cdot 1925 & =\frac{n}{2}(110) \cdot 2 \\
\frac{3850}{110} & =\frac{110 n}{110} \Rightarrow n=35
\end{aligned}
$$

There Ale 35 Rows.

Ex. A pile of bricks is arranged in rows. The number of bricks in each row forms the

$$
\begin{array}{llll}
a=65 & (1) & t_{n}=65+(9-1)(-6) & \\
d=-6 & t_{n}=65+8(-6) & & =\frac{n}{2}\left(a+t_{n}\right) \\
n=9 & t_{n} & =65+(-48) & \\
a_{n}=? & t_{n}=47 & & =4.5(82) \\
t_{n} & =17 & & =369
\end{array}
$$

Ex. Determine the first term if $d=-6, S_{n}=32$, and $n=13$

$$
\begin{aligned}
& \frac{2}{2}[2 a+2(65)+(-6)(9-1)] \\
= & \frac{9}{2}[2(5[(30+(-6)(8)]
\end{aligned}
$$

$$
\begin{aligned}
& a=? \\
& d=-6 \\
& n=13 \\
& S_{n}=32
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+c(n-1)] \\
32 & =4.5[13 \cdot 5[130+(-48)] \\
32 & =6.5(2 a-72) \\
& =4.5(82) \\
32 & =1369 \\
\frac{13}{2}[468 & =\frac{1368}{13}+468 \\
\frac{50}{13} & =38.5
\end{aligned}
$$

