4.1 Perfect Squares, Perfect Cubes, and Their Roots

A perfect square is a whole number that can be represented as
a product of two equal factors.

Rectangle
$A=l w$

Square
$A=s^{2}$

$$
\begin{aligned}
& \text { Area }=5^{2} \\
& A=25
\end{aligned}
$$

Area $=64$
$s=8$

The side length of the square is the square root of the area.
($\sqrt{ }$ means positive \#)
$\sqrt{64}=$

Perfect Squares: Can be represented as a square
with that area (square root is its side length).
Examples:
a) $7 \times 7=49$
b) $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
c) $(0.3)^{2}=0.09$
d) $(-3)(-3)=(-3)^{2}=9$ * squares are always positive.
Finding a Square Root
Method 1 - Prime Factors

* break in to two sets!

$$
\begin{array}{ll}
\sqrt{1764} & 211764 \\
22882 \\
3 \lcm{441} \\
3 \lcm{147} \\
7499 \\
7
\end{array}
$$

$$
\begin{aligned}
& =(2 \cdot 3 \cdot 7) \cdot(2 \cdot 3 \cdot 7) \\
& =42 \cdot 42
\end{aligned}
$$

$$
\text { So } \sqrt{1764}=42
$$

Practice:
a) $\sqrt{576}$

2576
21288
$(2.2 .2 .3) \cdot(2.2 .2 .3)$
$=24 \cdot 24$

$$
\sqrt{576}=24
$$

$2 \lcm{1256}$
$2 \longdiv { 1 2 8 }$
$2 \longdiv { 6 4 }$
b) $\sqrt{256}$

2132

$$
\begin{gathered}
(2 \cdot 2 \cdot 2 \cdot 2) \cdot(2 \cdot 2 \cdot 2 \cdot 2) \\
16 \cdot 16
\end{gathered}
$$

$$
\sqrt{256}=16
$$

Method 2 - Estimate and Check
2

$$
\sqrt{1296}
$$

$$
30^{2}=900 \text { and } 40^{2}=1600
$$

$$
900<1296<1600
$$

Try 36: $36^{2}=1296$
so $30^{2}<\sqrt{1296}<40^{2}$
(1296 is about halfway between 30° and $40^{2^{\prime \prime}}$)
So $\sqrt{1296}=36$

Method 3 - Calculator

$$
\sqrt{441}=21
$$

A perfect cube is a whole number that can be represented as
a product of 3 equal factors.
Rectangular

Prism

$$
V=l w h
$$

Cube
$V=s^{3}$

The side length of the cube is the cube root of the area.

$$
\sqrt[3]{125}=5
$$

Perfect Cubes: can tine represented as a cube with
that volume (cube root is side length)

Finding a Cube Root

$$
\text { - look for } 3 \text { sets }
$$

Method 1 - Prime Factors

$$
\sqrt[3]{2744}=\begin{aligned}
& 2 \longdiv { 2 7 4 4 } \\
& 2 \longdiv { 1 3 7 2 } \\
& 2 \longdiv { 6 8 6 } \\
& 7 \longdiv { 3 4 3 } \\
& 7 \begin{array}{|c|}
\boxed{449} \\
7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =(2 \cdot 7) \cdot(2 \cdot 7) \cdot(2.7) \\
& =14 \cdot 14 \cdot 14
\end{aligned}
$$

Practice:

$$
\sqrt[3]{2744}=14
$$

$$
\text { b) } \begin{array}{r}
\sqrt[3]{729} \\
3 \lcm{729} \\
3 \lcm{243} \\
3 \lcm{(81} \\
3 \lcm{27} \\
3 \boxed{9}
\end{array}
$$

Method 2 - Estimate and Check 3

$$
\sqrt[3]{1728}=
$$

$$
10^{3}=1000 \text { and } 20^{3}=8000
$$

$$
1000<1728<8000
$$

(1728 is closer to 1000)
Try 11: $11^{3}=|33|$
Try $12: 12^{3}=1728$

$$
\text { so } \quad 10^{3}<\sqrt[3]{1728}<20^{3}
$$

So $\sqrt[3]{1728}=12$

Method 3 - Calculator

$3 * \sqrt{(4913)}$

$$
\sqrt[3]{4913}=17
$$

Example:

A cube has a volume of $2197 \mathrm{~cm}^{3}$. What is its side length?

$$
\sqrt[3]{2197}=13 \mathrm{~cm}
$$

Page 146 \#(4,5,6)ace, 7,8,10,11,13,17

