\qquad
4.3 Mixed and Entire Radicals
A. Entire \rightarrow Mixed Radicals

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4 \cdot} \cdot \sqrt{9} \\
& =2 \cdot 3=6 \\
\sqrt{36} & =\sqrt{4 \cdot 9}=6
\end{aligned}
$$

This property can be used to simplify square and cube roots that are not perfect, but have factors that are perfect.
entire radical

$$
\sqrt[n]{a b}=\sqrt[n]{a} \bullet \sqrt[n]{b}
$$

Multiplication Property of Radicals

The factors of 24 are: $1,2,3,4,6$, perfect

$$
=\sqrt{4} \cdot \sqrt{6}=2 \cdot \sqrt{6}=2 \sqrt{6}
$$

Examples:
a) $\sqrt{80}$
d) $\sqrt[3]{144}$
e) $\sqrt[4]{32}$

$$
\text { b) } \begin{aligned}
& \sqrt{72} \\
&=\sqrt{8 \cdot 9}=\sqrt{(2 \cdot 2) \cdot 2 \cdot(3 \cdot 3} \\
&=2 \cdot 3 \sqrt{2} \\
&=6 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \begin{array}{l}
\sqrt[3]{128} \\
\quad=\sqrt[3]{4 \cdot 32} \\
= \\
=\sqrt[3]{2 \cdot 2 \cdot 8 \cdot 4} \\
=\sqrt[3]{2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2 \cdot 2} \\
\text { Math 11FP }
\end{array}=2 \cdot 2 \sqrt[3]{2}=4 \sqrt[3]{2}
\end{aligned}
$$

f) $\sqrt[4]{162}$

$$
\begin{gathered}
\sqrt[4]{16 \cdot 2} \\
\sqrt[4]{8 \cdot 2 \cdot 2}=\sqrt[4]{\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}} \\
2 \sqrt[4]{2}
\end{gathered}
$$

$\sqrt[3]{12 \cdot 12}$
$\sqrt[3]{2 \cdot 2 \cdot 3 @ \cdot 2 \cdot 3}$
$2 \sqrt[3]{3 \cdot 2 \cdot 3}$
$23 \sqrt{18}$

$$
\begin{aligned}
& \sqrt[4]{162} \\
&= \sqrt[4]{91 \cdot 2} \\
&= \sqrt[4]{9 \cdot 9 \cdot 2} \\
& 3 \cdot 3 \cdot 3 \cdot 2
\end{aligned}
$$

$$
=3 \sqrt[4]{2}
$$

$$
\begin{aligned}
& =\sqrt{8.10} \text { * thou for forpartors } \\
& =\sqrt{(2 \cdot 2) 2 \cdot 10}=\sqrt{(2 \cdot 2)(2 \cdot 2) 5} \\
& \begin{aligned}
=\sqrt{2 \cdot 2} \cdot \sqrt{2 \cdot 2} \cdot \sqrt{5} & =2 \cdot 2 \cdot \sqrt{5} \\
& =4 \sqrt{5}
\end{aligned}
\end{aligned}
$$

g)

$$
\begin{aligned}
\sqrt{x^{4}} & =\sqrt{x^{2} \cdot x^{2}} \\
& =\sqrt{x \cdot x} \cdot x \cdot x \\
& =x \cdot x=x^{2}
\end{aligned}
$$

B. Mixed \rightarrow Entire Radicals

Examples:
a) $4 \sqrt{3}$

$$
\begin{aligned}
& \sqrt{4 \cdot 4 \cdot 3} \\
= & \sqrt{48}
\end{aligned}
$$

b) $2 \sqrt{7}$

$$
\begin{aligned}
& \sqrt{2 \cdot 2 \cdot 7} \\
= & \sqrt{4 \cdot 7}=\sqrt{28}
\end{aligned}
$$

c) $3 \sqrt{10}$

$$
\begin{aligned}
& \sqrt{3 \cdot 3 \cdot 10} \\
& =\sqrt{9 \cdot 10}=\sqrt{90}
\end{aligned}
$$

h) $\sqrt[3]{16 x^{2} y^{4}}$

$$
\begin{aligned}
& =\sqrt[3]{(2 \cdot 2 \cdot 2 \cdot 2 \cdot x \cdot x}(y \cdot y \cdot y \cdot y \\
& 2 y \sqrt[3]{2 x^{2} y}
\end{aligned}
$$

