Date: __

4.3 Mixed and Entire Radicals

A. Entire \rightarrow Mixed Radicals

Multiplication Property of Radicals

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$= 2.3 = 6$$
 $\sqrt{36} = \sqrt{4.9} = 6$

14.9 = 14.19

This property can be used to simplify square and cube roots that are **not** perfect, but have The factors of 24 are: 1,2,3,4,68,12,24 factors that are perfect.

rentire radical $\sqrt{24}$

mixedical

Examples:

a)
$$\sqrt{80}$$
 d) $\sqrt[3]{144}$

$$= \sqrt{8 \cdot 10} * | \text{pook for factors} | \text{that appear twice} | = \sqrt{2 \cdot 2} \cdot 2 \cdot 10 = \sqrt{2 \cdot 2} \cdot 2 \cdot 5$$

$$=\sqrt{2\cdot 2\cdot \sqrt{2\cdot 2\cdot \sqrt{5}}}$$
 = $4\sqrt{5}$ = $4\sqrt{5}$ = $4\sqrt{5}$

b)
$$\sqrt{72}$$
= $\sqrt{8.9}$ = $\sqrt{2.2.2.2.3.3}$
= $2.3\sqrt{2}$
= $6\sqrt{2}$

3/12.12

c)
$$\sqrt[3]{128}$$
= $\sqrt[3]{4 \cdot 32}$
= $\sqrt[3]{2 \cdot 2 \cdot 8 \cdot 4}$
= $\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 2}$

Math 11FP = $\sqrt[3]{2 \cdot 2 \cdot 2}$ = $\sqrt[4]{2 \cdot 2 \cdot 2}$

f)
$$\sqrt[4]{162}$$

 $= \sqrt{9.9.2}$
 $= \sqrt{3.3.3.3.2}$
 $= \sqrt{3}$
Marsh

g)
$$\sqrt{x^4} = \sqrt{x^2 \cdot x^2}$$

$$= \sqrt{x \cdot x} \times x \times x$$

$$= x \cdot x = x^2$$

h)
$$\sqrt[3]{16x^2y^4}$$
= $\sqrt[3]{2 \cdot 2 \cdot 2} \cdot 2 \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$

$$2y^3 \sqrt{2}x^2y$$

B. Mixed \rightarrow Entire Radicals

Examples:

a)
$$4\sqrt{3}$$

=
$$\sqrt{48}$$

$$\sqrt{2.2.7}$$
 = $\sqrt{4.7}$ = $\sqrt{28}$

c)
$$3\sqrt{10}$$

$$=\sqrt{9.10} = \sqrt{90}$$

d)
$$3\sqrt[3]{2}$$

$$3\sqrt{3\cdot 3\cdot 3\cdot 2}$$

= $3\sqrt{27\cdot 2}$ = $3\sqrt{54}$

e)
$$2\sqrt[3]{12}$$

$$= 3\sqrt{8 \cdot 12} = 3\sqrt{96}$$

$$= 5 \text{ times}$$

f)
$$2\sqrt[3]{2}$$

$$= \sqrt[5]{32 \cdot 2}$$

$$= \sqrt[5]{64}$$

page 218 #4,5,10,11,12,17,18 abc for all