\qquad
4.4 Fractional Exponents and Radicals - Part 1

Recall product of powers exponent law:

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

This can be extended to powers with fractional exponents (with 1 as the numerator).

$$
\begin{array}{cl}
5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}}=5^{\frac{1}{2}+\frac{1}{2}}=5^{\frac{2}{2}}=5^{1} \quad 5^{\frac{1}{3} \cdot 5^{\frac{1}{3}} \cdot 5^{\frac{1}{3}}}=5^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=5^{\frac{3}{3}}=5^{\prime} \\
\sqrt{5} \cdot \sqrt{5}=\sqrt{5 \cdot 5}=\sqrt{25}=5 \quad \sqrt[3]{5} \cdot \sqrt[3]{5} \cdot \sqrt[3]{5}=\sqrt[3]{5 \cdot 5 \cdot 5}=\sqrt[3]{125} \\
=5
\end{array}
$$

$5^{\frac{1}{2}}$ and $\sqrt{5}$ are equivalent
$5^{\frac{1}{3}}$ and $\sqrt[3]{5}$ are equivalent

$$
a^{\frac{1}{2}}=\sqrt{a}
$$

\square

So,

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

Examples: Write each power as a radical and evaluate.
a) $27^{\frac{1}{3}}=\sqrt[3]{27}$
c) $(-64)^{\frac{1}{3}}=\sqrt[3]{-64}$
$=3$
$=100^{1 / 2}$

$$
\begin{array}{ll}
=\sqrt{100} & =4 \\
=10
\end{array}
$$

d) $256^{\frac{1}{4}}=\sqrt[4]{256}$

What if the numerator is not a 1 ?

Recall power of a power exponent law:

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
\left(8^{2}\right)^{3}=8^{6}
$$

We can use this exponent law when the numerator is not a 1 .

$$
\begin{aligned}
& 8^{\frac{2}{3}} \\
& 8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}=(2)^{2}=4
\end{aligned}
$$

* brackets are important!
or
$8^{\frac{2}{3}}=\left(8^{2}\right)^{1 / 3}=\sqrt[3]{64}=4$

$$
a^{\frac{m}{n}}=(\sqrt[n]{x})^{m} \text { or } \sqrt[n]{x^{m}}
$$

Examples: Write each power as a radical and evaluate.
a) $16^{\frac{3}{2}}=(\sqrt{16})^{3}$
c) $27^{\frac{2}{3}}$

$$
=(4)^{3}=64
$$

$$
(\sqrt[3]{27})^{2}=3^{2}=9
$$

b) $81^{\frac{3}{4}}$

$$
\begin{aligned}
& (\sqrt[4]{81})^{3} \\
= & (3)^{3}=27
\end{aligned}
$$

d) $(-32)^{0.4} \quad 0.4 \quad \frac{4}{10}=\frac{2}{5}$

$$
\begin{aligned}
& (-32)^{2 / 5} \\
& =(\sqrt[5]{-32})^{2}=(-2)^{2}=4
\end{aligned}
$$

page 227 \#3-7 all

