\qquad

Lesson 1: Factors and Multiples of Whole Numbers
Multiples of 12: \qquad $12,24,36,48,60,72,84,96 \ldots$
Factors of 12: \qquad
Prime number a number that is only divisible by

$$
\text { itself and I }(2,3,5,7,11,13,17,19,23 \ldots)
$$

composite umber: any number that is not prime.
Prime factors the factors of a number that are prime numbers Prime factorization: writing a number as the product of prime numbers.
How to Determine the Prime Factor of a Number:

Factor tree method
(split composite factors)

Hockey stick method (repeated division by prime factors)

a) 108

Math 10FP

$$
=2^{2} \times 3^{3}
$$

$$
\begin{aligned}
& 2 \boxed{48} \\
& 2 \boxed{24} \\
& 2 \boxed{12} \\
& 2 \frac{\boxed{6}}{3} \\
& =2^{4} \times 3
\end{aligned}
$$

b) 252

$$
\begin{aligned}
& 2 \boxed{252} \\
& 2 \underline{126} \\
& 3 \lcm{63} \\
& 3 \frac{121}{7}
\end{aligned}
$$

$$
\begin{gathered}
2 \times 2 \times 3 \times 3 \times 7=\quad \text { Marsh } \\
2^{2} \cdot 3^{2} \cdot 7
\end{gathered}
$$

Greatest Common Factor (GCF) - the largest factor of two or more numbers

Example 1: Determine the GCF of 24 and 42.

Method 1 - list all the factors of each number ("rainbow").

$421,2,3,6), 7,14,21,42$
So the greatest common factor is 6 .

Method 2 - Write the prime factorizations of each number.

$24=$ (2) $\times 2 \times 2 \times(3)$

1) Highlight the factors that appear in both factorizations.
$42=(2) \times(3) \times 7$
2) Multiply them together: $\mathbf{G C F}=2 \times 3=6$

Example 2: Determine the GCF of 27, 126 and 144.

Take common factor to ${ }^{2}$ west exponent.

Least Common Multiple (LCM) - the smallest number that is a multiple of 2 ormore numbers.
Example 3: Determine the LCM of 28, 42 and 63.
Method 1 - List multiples of each number until the same multiple appears on all lists

42: 42, 84, 126, 168, 210, 252
63: 63, 126, 189, (252) So the LCM is 252 .

Method 2 - Write the prime factorizations of each number

The greatest power of 2 in any list is \qquad 2^{2} The greatest power of 3 in any list is \qquad The greatest power of 7 in any list is \qquad .

1) Highlight the greatest power of each prime factor in any list.
2) Multiply them together.

$$
\text { LCM }=2^{2} \cdot 3^{2} \cdot 7^{1}=4 \cdot 9 \cdot 7=252
$$

page 140 \#3-5ace,8-11ac,13,17

