Lesson 1 Representing Relations and Properties of Functions

A. Representing Relations

Vocabulary:

Set: a collection of distinct items. ie. $\{1,2,3,4,5\}$
Element: one item in a set. The order of elements in a set does not matter.
Relation: when the elements of one set associate with the elements of another set.

There are 6 ways to represent a relation:

1) Arrow Diagram

$$
\begin{aligned}
& \{J A N, \text { FEB., MAR,, APR. }\} \\
& \{28,30,31\}
\end{aligned}
$$

2) Table of Values

3) In Words

The relation shows the association "has the number of" from a set of Months to a set of Days.
4) A set of Ordered Pairs (x, y)
\{(January, 31), (February, 28), (March, 31), (April, 30)\}
5) A graph
6) An equation

B. Properties of Functions

Vocabulary:

Domain: the set of first elements of a relation (INDEP. VARIABUES, X VALUES) Range: the set of related second elements of a relation (DEP. VARLABLE, Y VALUES) Function: a special type of relation where each element in the domain is associated with exactlye element in the range

Example 1:

Here are some different ways to relate vehicles and the number of wheels each has.

This relation associates a number with a vehicle with that number of wheels.

This diagram does not represent a function because there is one element in the first set that associates with two elements in the second set; that is there are two arrows from 2 in the first set.

Ordered Pairs:
\{(1, unicycle) (2. bicycle),
(2. motorcycle), (3 tricycle), (4 car)\}

The set of ordered pairs above does not represent a function because two ordered pairs have the same first element.

The domain is the set of the first elements: $\{1,2,3,4\}$

The range is the set of associated second elements: \{unicycle, bicycle, motorcycle, tricycle, car\}

This relation associates a vehicle with the number of wheels it has.

This diagram represents a function because each element in the first set associates with exactly one element in the second set; that is, there is only one arrow from each element in the first set.

Ordered Pairs:
\{(unicycle, 1), (bicycle, 2),
(motorcycle, 2), (tricycle, 3), (car, 4)\}
The set of ordered pairs above represents a function because the ordered pairs have different first elements.

The domain is the set of first elements:
\{unicycle, bicycle, motorcycle, tricycle, car\}
The range is the set of associated second elements: $\{1,2,3,4\}$

How do you determine if a relation is a function?

1) Check to see if any ordered pairs have the same first element. If not, then for every first element there is exactly one second element, therefore the relation is a function.
2) Check to see if any element in the first set associates with more than one element in the second set. If it does, the relation is NOT a function.

You can look closely at the ordered pairs, in a table or in an arrow diagram to see if the above are true.

Example 2: Is $\{(6,-3),(4,1),(7,-2),(-3,1)\}$ a function? Identify the domain and range.
The domain is:
The range is:

The domain is paired with exactly one element of the range, the relation \qquad a function.
$=$
\qquad function is NOT a function since 1 is paired with more than one element of the range.

With an inverse function we RELRSE the order of the order pairs.
Example 3: For each relation below:

- Determine whether the relation is a function. Justify your answer.
- Identify the domain and range of each relation.
a) A relation that associates a number with a prime factor of the number: $\{(4,2),(6,2),(6,3),(8,2),(9,3)\}$

b)

$R:\{28,30,31\}$

Dependent and Independent Variables

(x-axis)
Independent variable:

Dependent variable: VARIABLE TITAT DEPENDS ON OTHER FACTORS.

$$
(y-a x i s)
$$

In the workplace, a person's gross pay, P dollars, often depends on the number of hours worked, h.
So, we say P is the dependent variable. Since the number of hours worked, h, does not depend on the gross pay, P , we say that h is the independent variable.

We can think of a function as an input/output machine. The input can be any number in the domain, and the output is dependent on the input.
page 270 \# 4, 5, 8, $9 i$ i, 12

