Lesson 1: Slope of a Line

The steepness of a roof is measured by calculating its SLOPE LAST CHAPTER IT WAS CALLED "RATE OF CHANGE" BIC THE UNITS FOR RISE\& RUN WERE DIFFERENT.

Rise: \qquad
(\triangle IN Y)
Run: \qquad
The change in y is the \qquad RISE

The change in x is the \qquad

$$
\text { slope }(m)=\frac{R(s E}{R U N}
$$

The symbol for slope is \qquad m

Example 1: Determine the slope of each line segment.

There are 4 types of slope:
(4) STDE OF

When a line segment goes up to the right, both y and x \qquad INCREASE $x: y$ axes
(1) both the rise and the run are \qquad Positive , so the slope of the segment is Positive.

$$
m=\frac{+6}{+4}=\frac{3}{2}
$$

(2) When a line segment goes down to the right, y \qquad DECREASES

DROPANG DOW N TOWARDS
\qquad and x

INCREASE ; the rise is \qquad NEGATIVE and the run is Positive , so the slope of the segment is \qquad negative .

$$
\begin{aligned}
& m=\frac{-6}{+5.5} \doteq 1.09 \\
& \text { OR COUV. a REDUCE } \\
& =\frac{-6}{5.5} \cdot 10=\frac{-60 \div 5}{55 \div 5}=\frac{-12}{11} \text { BETTER }
\end{aligned}
$$

(3)

The rise is \qquad and the run is \qquad positive . The slope of a
horizontal line is ZERO.

$$
m=\frac{0}{+6}=0
$$

(4)

For a vertical line segment, y \qquad increases and the change in x is \qquad 0 .

The rise is \qquad POSITIVE and the run is \qquad . The slope of a vertical line is UNDEFINED

$$
m=\frac{+6}{0}=\text { UNDEFINED }
$$

Example 2: Draw a line segment with each slope.
a) $\frac{5}{2}$ starting at $A(-3,-3)$
$\rightarrow+\frac{5}{} \rightarrow$ UP 5
b) $-\frac{7}{6}$ starting at $C(0,4)$

Example 3: Determine the slope of the line that passes through $G(-3,-5)$ and $H(4,3)$.

1) PLOT POINTS
2) Join Points
3) COUNT RISE E RUN
4) $m=\frac{R_{1 S E}}{R_{U N}}$ $=\frac{8}{7}$

Slope of a Line

A line passes through $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, you can use this formula to determine the slope of a line.

$$
\begin{aligned}
& \operatorname{slope}(m)=-y_{2}-y_{1} \leftarrow \Delta y \\
& x_{2}-y_{1} \leftarrow \Delta x
\end{aligned}
$$

Example 4: Find the slope of a line passing through $\mathrm{A}(4,-1)$ and $\mathrm{B}(-5,6)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-(-1)}{-5-4}=\frac{7}{-9} \quad m=\frac{-7}{9}
$$

Example 5:
Tom has a part-time job. He recorded the hours he worked and his pay for 3 different days. Tom plotted these data on a grid.
a) What is the slope of the line through these points?

* Pick any two points: $A(2,24)$

$$
B(4,48)
$$

$$
m=\frac{\$ 48-24}{4-2 h}=\frac{\$ 24}{2 h}=\frac{\$ 12}{1 h}
$$

Graph of Tom's Pay

or $\$ 12 / h$

c) How much does Tom earn in $31 / 2$ hours? $\quad \frac{\$ 2}{h} \cdot 3.5 \mathrm{~h}=\$ 42$
d) How long did it take Tom to earn $\$ 30$?

$$
\frac{\$ 30}{412 / h}=2.5 h
$$

