Notes	Lesson 1: Slope of a Line
	The steepness of a roof is measured by calculating its <u>SCOFE</u> .
	LAST CHAPTER IT WAS CALLED "RATE OF CHANGE" B/C THE UNITS FOR RISE & RUN WERE DIFFERENT.
-	THE UNITS FOR RISE & RUN WERE DIFFERENT.
	Rise: VERTICAL DISTANCE
	(A IN Y)
	RUN: HORIZONTAL DISTANCE (& IN X)
	The change in y is the
	The change in x is the
	slope (m) = $\frac{R_{\text{csc}}}{R_{\text{const}}}$
	The symbol for slope is

Example 1: Determine the slope of each line segment.

Example 2: Draw a line segment with each slope.

Example 3: Determine the slope of the line that passes through G(-3,-5) and H(4, 3).

Slope of a Line

A line passes through A(x_1 , y_1) and B(x_2 , y_2), you can use this formula to determine the LITTLE NUMBERS ARE SUBSCRIPTS slope of a line.

slope (m) =
$$\frac{1}{\sqrt{2}}$$
 $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

- $\frac{530}{12/h} = 2.5h$

page 339 #4-6,9,11,12,13,15,16