2.1 The Tangent Ratio \& Using the Tangent Ratio to Calculate Lengths
A. Introduction to the Tangent Ratio

12

Measure of $\angle \mathrm{A}$:

$$
\begin{aligned}
& \angle A_{1}=37^{\circ} \quad \angle A_{2}=37^{\circ} \quad \angle A_{3}=37^{\circ} \\
& \text { * ANGLES ARE EOUA }
\end{aligned}
$$

Calculate the ratio of sides:
(1)

$$
\frac{3}{4}=0.75
$$

(2) $\frac{6}{8}=0.75$ (3) $\frac{9}{12}=0.75$

* ratios are equal

Tangent Ratio: the ratio between the opposite है adjacent sides of a right triangle $\left(90^{\circ}\right)$

11

Examples:

1) Determine $\tan A$ and $\tan C$.

Math 10 FP

$$
\begin{aligned}
\tan A & =\frac{0}{a} & \tan C & =\frac{0}{a} \\
& =\frac{B C}{A B} & & \frac{A B}{B C} \\
& =\frac{3}{4} & & =\frac{4}{3} \\
& =0.75 & & =1 . \overline{3}^{\text {Marsh }}
\end{aligned}
$$

2) Calculate $\tan X$ and $\tan Z$.

$$
\begin{aligned}
\tan x & =\frac{y z}{x y} & \tan z & =\frac{x y}{y z} \\
& =\frac{5}{10} & & =\frac{10}{5} \\
& =0.5 & & =2
\end{aligned}
$$

B. Calculating Tangent Ratio from Side Lengths

Steps:

1) Label triangle: \qquad H, O, A, θ Hint: label angle_first, then $\quad \mathrm{H}$
Write tangent ratio equation. $\tan \boldsymbol{\theta}=\frac{\boldsymbol{o}}{\boldsymbol{A}}$
2) Fill in known values into equation.
3) Simplify (reduce fraction if possible) or calculate angle (and round decimal).

Examples: Determine the tangent ratios for $\angle \mathrm{A}$ and $\angle \mathrm{B}$.
i) as a ratio
ii) as a decimal (4 places)
a)

b)

c)

A

$$
\tan A=\frac{4}{7}
$$

$$
\begin{aligned}
\tan B & =\frac{7}{4} \\
& =1.7500
\end{aligned}
$$

$$
=0.5714
$$

C. Calculating Tangent Ratio Given an Angle

1) Make sure your calculator is in degree mode (DEG or DRG or D).
2) Use the "tan" button your calculator.

Calculator instructions:

$$
\tan (\text { angle })=
$$

OR (angle) tan
Examples: Calculate the tangent ratio of the following angles to 4 decimal places.
a) $\theta=35^{\circ}$
b) $\theta=27^{\circ}$
c) $\theta=72^{\circ}$

$$
\tan (35)=0.7002
$$

$$
\tan (27)=0.5095
$$

D. Calculating an Angle Given the Tangent Ratio

1) Make sure your calculator is in degree mode (DEG or DRG).'
2) Do the opposite of tan to both sides of the equation. Use the inverse \tan or $\tan ^{-1}$ button on your calculator.
$\div \tan$ shift $2^{n d} F$

Calculator instructions:

$$
\tan \theta=\text { ratio }
$$

$$
\begin{aligned}
\tan ^{-1}=\frac{1}{\tan } \quad \tan ^{-1} \tan \theta & =\tan ^{-1} \text { ratio } \\
\theta & =\tan ^{-1}(r a \operatorname{tio})
\end{aligned}
$$

Examples: Calculate the angle of the following tangent ratios to the nearest degree.
a) $\tan \theta=0.8693$

$$
\begin{aligned}
\theta & =\tan ^{-1}(0.8693) \\
& =41^{\circ}
\end{aligned}
$$

b) $\tan \theta=2.1445$

$$
\begin{aligned}
\theta & =\tan ^{-1}(2.1445) \\
& =65^{\circ}
\end{aligned}
$$

c) $\tan \theta=\frac{5}{6}$

$$
\begin{aligned}
\theta & =\tan ^{-1}(5 \div 6) \\
& =40^{\circ}
\end{aligned}
$$

d) A support cable is anchored to the ground 5 m from the base of a telephone pole. The pole is 19 m high. The cable is attached near the top of the pole. What angle, to the nearest degree, does the cable make with the ground?

$$
\begin{aligned}
\tan \theta & =\frac{0}{a} \\
\tan \theta & =\frac{19}{5} \\
\theta & =\tan ^{-1}\left(\frac{19}{5}\right) \\
& =75^{\circ}
\end{aligned}
$$

