\qquad

Lesson 2: Common Factors of a Polynomial

Examples: Classify each polynomial and state the degree:

1) $\left.3 x^{2}\right)^{2}+4 x-1$ trinomial (quadratic) degree 2
2) $9 x^{2}-x+7 x^{3}-1$ polynomial degree 3
B. Factoring Polynomials

To factor a polynomial, we write the polynomial as a product of its factors.
To do this we must determine the greatestcommon factor or GCF.
Example 1: State the GCF.

1) $12 a^{\prime} b^{0}, 15 a^{2} b^{2}$
$3 a b$
2) $18 x^{4} y^{2},-24 x^{3} y^{5}$

Example 2: Factor using algebra tiles.

1) $6 x+9$

$$
2 x+3
$$

2) $6 x+4 x^{2} 2 x+3$

Example 3: Factor. Check by expanding. (multiply)

$$
G C F=5 a^{1)} \frac{5 a b^{2}}{5 a}-\frac{15 a b}{5 a}+\frac{20 a^{2}}{5 a}=5 a\left(b^{2}-3 b+4 a\right)=5 a b^{2}-15 a b+20 a^{2}
$$

2) $\frac{-5 x^{2}}{-5} \frac{-10 x}{-5}+\frac{5}{-5}=-5\left(x^{2}+2 x-1\right)=-5 x^{2}-10 x+5$
$G C F=-5$
3) $\frac{-12 x^{3} y}{-4 x y}-\frac{20 x y^{2}}{-4 x y} \frac{-16 x^{2} y^{2}}{-4 x y}=-4 x y\left(3 x^{2}+5 y+4 x y\right)$
$G C F=-4 x y$
Example 4: The surface area of a cylinder is given by the formula: $S A=2 \pi r^{2}+2 \pi r h$
i) Write the formula in factored form.

$$
G C F=2 \pi r \quad S A=\frac{2 \pi r^{2}}{2 \pi r}+\frac{2 \pi r h}{2 \pi r} \quad S A=2 \pi r(r+h)
$$

ii) Use both formulas to calculate the surface area of a cylinder with a radius of 6 cm and a height of 11 cm .

$$
\begin{aligned}
& S A=2 \pi r^{2}+2 \pi r h \\
& =2 \pi(6)^{2}+2 \pi(6)(11) \\
& =226.19+414.69 \\
& =640.9 \mathrm{~cm}^{2} \\
& S A=2 \pi r(r+h) \\
& =2 \pi(6)(6+11) \\
& =2 \pi(6)(17) \\
& =640.9 \mathrm{~cm}^{2}
\end{aligned}
$$

iii) Which formula is simpler to use?

$$
S A=2 \pi r(r+h)
$$

page 155 \#4ab, 7-10ace, 16-18

