Lesson 2: Slopes of Parallel and Perpendicular Lines
. Parallel Lines

1) Never cross
2) Have the same
3) Have different

Examples:
How STEEP tile line is.
SLOPE \qquad (m).
\qquad X-Interfat an and
y-intercert (b)

$y=x+b$
$b=+3$
not parallel because slopes are different.

b) $y-1=2(x+3)$

$y=2 x+7$

$$
m=2 \sqrt{ } \mathrm{SAME}
$$

$b=+7 V^{\text {DIFFERENT }}$
Parallel

$$
\begin{aligned}
& \left\{\begin{array}{l}
m=2 \text { V SAME } \\
b=+3 \times \text { SHOULDBE } \\
\text { DIfFHRNT }
\end{array}\right. \\
& \text { NOTPARANELEL }
\end{aligned}
$$

2) Line $E F$ passes through $E(-3,-2)$ and F $(-1,6)$. Line CD passes through $C(-1,-3)$ and $D(1,7)$. Line $A B$ passes through A $(-3,7)$ and $B(-5,-2)$. Sketch the lines. Are they parallel? Justify your answer.

$$
\left.\begin{array}{l}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
E(-3,-2) \\
F(-1,6)
\end{array}\right\}
$$

$$
m_{\text {FF }}=\frac{6-(-2)}{-1-(-3)} \frac{\text { RISE }}{\text { RUN }}
$$

$$
=\frac{8}{2}=4
$$

$$
\begin{aligned}
& m_{c D}=\frac{2}{1-(-3)}=\frac{10}{2}=5 \\
& m_{1}=-2-7 \\
& =-\frac{9}{1}=
\end{aligned}
$$

$$
M_{A B}=\frac{(-(-1)}{-2-7}=\frac{-9}{-2}=\frac{-1}{-5}
$$

3) The coordinates of the endpoints of segments are given as $A(3,-1), B(7,1)$ and $C(5,6), D(13,10)$. Are the two line segments parallel? $x_{1} y_{1} x_{2} y_{2}$

$$
\begin{aligned}
S \text { copt }(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{A B}=\frac{1-(-1)}{7-3}=\frac{2}{4}=\frac{1}{2} \\
& m_{C D}=\frac{10-6}{13-5}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

parallel
(b/c they have the Same slope)
B. Perpendicular Lines

1) Cross at a \qquad 90° angle
2) Slopes:
(i) have opposite direction (+/-)
NEEATVE RECIPROCAL

Examples:
(ii) are \qquad
FlIpped

$$
y=m x+b
$$

1) Which of the following are perpendicular $t \phi y=\frac{2}{3} x+1$?
a) $y=-\frac{3}{2} x+3$ $m=\frac{2}{3}$ CHECKING

$$
m=-\frac{3}{2}
$$

YES, PERPENDICULAR

$$
-\frac{3}{2} \frac{1}{3}
$$

b) $y-1=\frac{-2}{3}(x+3)$ FOR

$$
y-x=-\frac{2}{3} x+2
$$

$$
y=-\frac{2}{3} x-1
$$

NOT PERPENDICULAR $\quad y=-\frac{3}{2} x+3$
negative reciprocal ${ }^{-2}$ perpendicular ty the line through $\mathrm{G}(-2,3)$ ard $\mathrm{H}(1,-2)$.

$$
\begin{aligned}
& m_{\text {flt }}=\frac{-2-3}{1-(-2)}=\frac{-5}{3} \\
& 1 m_{\text {bht }}=+\frac{3}{5} \\
& \text { b) Determine the coordinates bf J sot }
\end{aligned}
$$

b) Determine the 20 ordinates of $\mathrm{J} \delta$ that line GJ is perpendicular to line GH .

3) EFGH is a parallelogram. Is it a rectangle? Justify your answer.

$$
\begin{aligned}
& m_{E F}=\frac{-2-3}{-3-(-1)}=\frac{-5}{-2}=\frac{-3-(-2)}{0-(-3)}=\frac{-1}{3} \\
& m_{F G}=\frac{2-(-3)}{2-0}=\frac{5}{2} \\
& m_{G H}=\frac{-1}{3} \\
& M_{E H}=\frac{2-3}{2-(-1)}=\frac{-1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& E(-1,3) \\
& F(-3,-2) \\
& G(0,-3) \\
& H(z, 2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { USE } \perp m=\frac{3}{5} \quad \begin{array}{l}
\text { up } \\
\text { right } 5
\end{array} \\
& \text { or down } 3
\end{aligned}
$$

4) The coordinates of the endpoints of segments are given as $A(24,-1)$, $B(12,5)$ and $C(-4,1), D(2,13)$. Are the two line segments parallel,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
A(24,-1)
$$

$B(12,5)$

$$
C(-4,1)
$$

$$
D(2,13)
$$

$$
\begin{aligned}
& m_{A B}=\frac{5-(-1)}{12-24}=\frac{6}{-12}=-\frac{1}{2} \\
& m_{C D}=\frac{13-1}{2-(-4)}=\frac{12}{6}=2 \text { or } \frac{2}{1}
\end{aligned}
$$

$m_{A B} \perp m_{C D}$ MEANING THE LINES AR perpendicular
5) Line ST passes through $S(-2,7)$ and $T(2,-5)$. Line UV passes through U(-2,3) and V(7,6)..
a) Are these two lines parallel, perpendicular, or neither? Justify your answer.

$$
\begin{aligned}
& m_{S T}=\frac{-5-7}{2-(-2)}=\frac{-12}{4}=-3 \\
& m_{u v}=\frac{6-3}{7-(-2)}=\frac{3}{9}=\frac{1}{3}
\end{aligned}
$$

Perpendicular
$\mathrm{B} / \mathrm{C} m_{S T}+m_{u v}$ neh. RELIPR.
b) Sketch the lines to verify your answer to part a).

$$
\begin{aligned}
& S(-2,7) \\
& T(2,-5) \\
& u(-2,3) \\
& v(7,6)
\end{aligned}
$$

6) Triangle $A B C$ has vertices $A(-1,-2), B(-4,0)$, and $C(-2,3)$. Verify that it is a right triangle.

1. Draw a graph/picture.
2. Find the slopes.

BASED ON GRAPH $m_{A B}$ SHOULD $B E$ A NEG. RECAP. OF $m_{B C}$.

$$
\begin{aligned}
& m_{A B}=\frac{0-(-2)}{-4-(-1)}=\frac{2}{-3} \\
& m_{B C}=\frac{3-0}{-2-(-4)}=\frac{3}{2}
\end{aligned}
$$

3. Check for perpendiculars.

$$
\triangle A B C \text { is A RiGHt triancle because }
$$

$$
m_{A B} \perp m_{B C}
$$

