2.3 Sine and Cosine Ratios

A. Primary Trigonometric Ratios

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

A trick to remember:

SOL CAM TOR

SH CA TA

- Sine and Cosine relate the hypotenuse to another side.
- We use the same steps as when using the Tangent ratio.

Examples:

1) Calculate the following the four decimal places.
a) $\sin \left(65^{\circ}\right)=0.9063$
b) $\cos \left(12^{\circ}\right)=0.9781$
c) $\tan \left(33^{\circ}\right)=0.6494$
2) Solve for θ to the nearest degree.
a) $\sin (\theta)=0.1965$
b) $\cos (\theta)=0.2397$
c) $\tan (\theta)=2.6209$
$\theta=\sin ^{-1}(0.1965)$
$\theta=\cos ^{-1}$
$\theta=76^{\circ}$
$\theta=69^{\circ}$
3) Write the primary trig ratios for the following triangles.

$$
\begin{aligned}
& \sin \theta=\frac{3}{5} \\
& \cos \theta=\frac{4}{5}
\end{aligned}
$$

$$
\tan \theta=\frac{3}{4}
$$

$$
\begin{aligned}
\sin \theta & =\frac{15}{17} \\
\cos \theta & =\frac{8}{17} \\
\tan \theta & =\frac{15}{8}
\end{aligned}
$$

4) Determine the value of each angle to the nearest degree.

b) $\angle \mathrm{K}$ and $\angle \mathrm{M}$

B. Angles of Inclination and Depression

Angle of Inclination (or elevation): an angle going up from a

Angle of Depression: \qquad horizontal

Examples:
5) A water bomber is flying at an altitude of 5000 ft . The plane's radar shows that it is 8000 ft from the target site. What is the angle of elevation of the plane measured from

Math 10 FP

$$
\sin \theta=\frac{\text { opp }}{\text { hyp }}
$$

$$
\sin \theta=\frac{5000}{8000}
$$

$$
\theta=\sin ^{-1}\left(\frac{5000}{8000}\right)
$$

Marsh
6) An airplane is approaching an airport. The pilot knows the plane is 500 m above the landing strip and 1500 m away from the terminal by line of sight. What is the angle of depression of the pilot's view of the terminal to the nearest degree?

pg. 95 \#4-6,7-9ab,12-14

