\qquad

Lesson 3: Add, Subtract, and Expand Polynomials

A. Degree of a Polynomial

B. Addition \& Subtraction of Polynomials

Monomial - sum of the exponents

$4 a^{1}$	degree $\frac{1}{4}$
$2 a b^{3}$	degree $-\frac{6}{6}$
$3 x^{1} y^{3} z^{2}$	degree

Polynomial - the term with the highest degree

$$
\begin{array}{ll}
2 a^{3}+b^{2} & \text { degree } \frac{3}{5} \\
2 x^{2} y^{3}+y^{4} & \text { degree }
\end{array}
$$

Like terms - terms with the same variables) raised to the same exponent.

$$
3 a, 7 a
$$

$-6 a b^{2}, 7 a b^{2}$
The coefficients of like terms are added or subtracted together to produce a single term.

Examples: Simplify.

$$
2 x+5 x+y-3 y
$$

1) $(2 x+y)+(5 x-3 y)=7 x-2 y$
2) $\left(x^{2}-x-3\right)+\left(x^{2}-2 x-3\right)=x^{2}+x^{2}-x-2 x-3-3$

$$
=2 x^{2}-3 x-6
$$

3) $(2 x+y)+(\bar{x}+5 y)$

$$
(2 x+y)+(-x+5 y)=x+6 y
$$

4) $\left(7 a^{2}+5 a b-3 b^{2}\right)+\left(5 a^{2}+3 a b+6 b^{2}\right)$

$$
2 a^{2}+8 a b+3 b^{2}
$$

C. Expanding Polynomials

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

We use the distributive property.

$$
a(b+c)=a b+a c
$$

Examples: Expand and Simplify. State the degree.

1) $4(3 x+1)=12 x+4$
2) $-5\left(2 x^{2}+x-6\right)=-10 x^{2}-5 x+30$
3) $-3 x(7 x-2 y+z)=-21 x^{2}+6 x y-3 x z$
4)

$$
\begin{aligned}
\text { * collect like }
\end{aligned}
$$

5)

$$
\begin{aligned}
12 b^{3}(b-3)-2 b^{2}(b+5) & =12 b^{4}-36 b^{3}-2 b^{3}-10 b^{2} \\
& =12 b^{4}-38 b^{3}-10 b^{2}
\end{aligned}
$$

6) $3 a^{2} b-4 a(a+3)+\left(2 a^{2} b-7 a\right)$

$$
\begin{gathered}
=3 a^{2} b-4 a^{2}-12 a-2 a^{2} b-7 a \\
=-4 a^{2}+a^{2} b-19 a
\end{gathered}
$$

