Lesson 3 - Sec. 7.4 Solving Systems by Substitution
Use substitution when one of the equations has a coefficient (the number in front of the variable) that is ± 1.

Example 1: Solve this linear system:
(1) $3 x+4 y=-4$
(2) $x+2 y=2$

Step 1: Isolate the "1" coefficient variable.

$$
x \pm \frac{2}{2 y} y=2-2 y
$$

Step 2: Plus isolated value into the other equation and solve.

$$
(-2 y+2)
$$

$$
\begin{aligned}
& 3 x+4 y=-4 \\
& 3(-2 y+2)+4 y=-4 \\
& -6 y+6+4 y=-4 \\
& -2 y+6=-4 \\
& -6 \quad-6 \\
& \frac{-2 y}{-2}=\frac{-10}{2} \quad y=5
\end{aligned}
$$

Step 3: Substitute value from step 2 into isolated equation.

$$
\begin{aligned}
& x=-2 y+2 \\
& x=-2(5)+2 \\
& x=-10+2 \\
& x=-8
\end{aligned}
$$

Step 4: Check $P(-8,5)$

$$
\begin{gathered}
3 x+4 y=-4 \\
3(-8)+4(5)=-4 \\
-24+20=-4 \\
-4=-4
\end{gathered}
$$

Example 2: Solve this linear system:
(1) $2 x-4 y=7$
(2) $4 x+y=5$

$$
y=-4 x+5
$$

$$
\begin{aligned}
& 2 x-4(-4 x+5)=7 \\
& \begin{array}{l}
2 x+16 x-20=7 \\
18 x-20=7 \\
+20+20 \\
18 x=27 \\
: \text { Solve this inf ar systiti: }
\end{array} x=\frac{27}{18}=\frac{3}{2}
\end{aligned}
$$

Example 3: Solve this lintarar system:
$\begin{aligned} & \text { (1) } 4 x+y=6 \\ & \text { (2) } 2 y-3 x=1\end{aligned} \longrightarrow y=-4 x+6$
(2) $2 y-3 x=1$

$$
\begin{gathered}
2(-4 x+6)-3 x=1 \\
-8 x+12-3 x=1 \\
-11 x+12=1 \\
-12=-12 \\
\frac{-11 x}{-11}=\frac{-11}{-11} x=1
\end{gathered}
$$

$$
\begin{aligned}
& y=-4 x+5 \\
& y=-4\left(\frac{3}{2}\right)+5 \\
& y=-6+5=-1
\end{aligned}
$$

check: $X\left(\frac{3}{2}\right)-4(-1)=7$

$$
3+4=7
$$

$$
7=7 \vee
$$

$P(3 / 2,-1)$

$$
\begin{aligned}
& y=-4(1)+6 \\
& y=-4+6=2
\end{aligned}
$$

check: $2(2)-3(1)=1$

$$
\begin{aligned}
4-3 & =1 \\
1 & =1
\end{aligned}
$$

$P(1,2)$

Example 4: Create a linear system to model this situation:
Ned invested $\$ 2000$, part at an annual interest rate of 8% and the rest at 10%. After one year, the total interest was $\$ 190$. How much did he invest at each rate?

$$
\begin{aligned}
& \text { Let } x=8 \%=0.08 \quad x+y=2000 \quad x=-y+2000 \\
& y=10 \%=0.10 \quad 0.08 x+0.1 y=190 \\
& {[0.08 x+0.1 y=190]^{\times 100} \quad 8 x+10 y=19000} \\
& 8(-y+2000)+10 y=19000 \\
& x=-(1500)+2000 \\
& x=500 \\
& -8 y+16000+10 y=19000 \\
& 2 y+16000=19980 \\
& \text { - } 16000 \text { page } 425 \text { \#facoc,5ac, 11,15, 16,23 } \\
& \frac{2 y}{2}=\frac{3000}{2} \quad y=1500 \text { Marsh }
\end{aligned}
$$

