2.4 Using the Sine and Cosine Ratios to Calculate Lengths

$$
\sin \theta=\frac{\text { opposite }}{\text { hypoteruse }} \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Examples:

1) Determine the length of the missing side to two decimal places (hundreth).

d) JK

$$
\begin{aligned}
\sin \theta & =\frac{\text { opp }}{\text { hyp }} \\
\sin 65 & =\frac{7.6}{a} \\
a & =\frac{7.6}{\sin 65}=8.39 \mathrm{~cm}
\end{aligned}
$$

2) A kite with a string 15 m long is stuck in a tree. The string forms an angle of elevation with the ground of 20°. How tall is the tree to the nearest tenth?

$$
\begin{gathered}
\sin \theta=\frac{o p p}{h y p} \\
(15) \sin 20=\frac{h}{15}(15)
\end{gathered}
$$

$$
h=5.1 \mathrm{~m}
$$

3) From a radar station, the angle of elevation of an approaching airplane is 32.5°. The horizontal distance between the plane and the radar station is 35.6 km . How far is the plane from the radar station to the nearest tenth of a kilometer?

