Applying the Trig Ratios and Solving Triangles
When we calculate the measures of all the angles and all the lengths in a right triangle, we solve the triangle.
A. Methods of Solving Right Triangles

- Trigonometry SOH CAH TOA
- Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
- Sum of Angles in a Triangle (180° Rule)
B. Solving a Right Triangle

Steps:
4) Solve for missing side.

1) Sketch and label triangle.
a) Trig for missing side.
b) Pythagoras for third side.
2) Fill in known values.
3) Write a list of missing values.
4) Solve for missing angle.
a) First angle always 90°.
b) 180° Rule for third angle.

Examples: Solve the following right triangles, sides to a tenth and angles to nearest degree.

1)

$x Z$	11.7 cm
$\angle X$	59°
$L Z$	31°

$$
\begin{array}{ll}
x 2: \quad & a^{2}+b^{2}=c^{2} \\
6.0^{2}+10.0^{2}=c^{2} \\
36+100=c^{2} \\
136=c^{2} \quad c=\sqrt{136}=11.7 \mathrm{~cm} \\
L x: \quad \tan x & =\frac{10.0}{6.0} \quad x=\tan ^{-1}\left(\frac{10.0}{6.0}\right) \\
x=59^{\circ}
\end{array}
$$

triangle
2) In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{BC}=5.4$ and $\mathrm{AC}=7.1$. Solve $\triangle \mathrm{ABC}$.

$$
\begin{aligned}
& L A: \tan A=\frac{5.4}{7.1} \\
& \quad A=\tan ^{-1}\left(\frac{5.4}{7.1}\right)=37^{\circ}
\end{aligned}
$$

$\angle B: 180-90-37=53^{\circ}$
$A B: a^{2}+b^{2}=c^{2}$
3)

$$
7.1^{2}+5.4^{2}=c^{2}
$$

$A B=8.9$

GB. $\quad \tan 39=\frac{9.0}{x}$

$$
\angle J=180-90-39
$$

$$
x=\frac{9.0}{\tan 39}
$$

GU	11.1 cm
HS	14.3 cm
SJ	51°

$$
\begin{aligned}
G H & =x \\
H J: \sin 39 & =\frac{9.0}{y} \\
H & =y=14.3 \mathrm{~cm}
\end{aligned}
$$

