Lesson 5: Properties of Linear Relations
The table of values and graph show the cost of a pizza with up to 5 extra toppings.

a) What patterns do you see in the table?
as the \# Of toppings increase by one, the cost INCREASES BY $\$ 0.75(75 \notin)$
b) Write a rule for the pattern that relates the cost of a pizza to the number of its toppings.

$$
\begin{aligned}
& m=\text { SLOPE } \\
& b=y \text {-iNTEREST }
\end{aligned}(y=m x+b)
$$

$$
\begin{aligned}
& \text { EQuATOR } \\
& (y=m x+b) \quad c=0.75 T+12.00
\end{aligned}
$$

ph?

$$
m=\frac{\text { rise }}{\text { run }}
$$

$$
\begin{aligned}
& =\frac{0.75}{1} \\
& =0.75
\end{aligned}
$$

c) How are the patterns in the table shown in the graph?

$$
\begin{aligned}
& y=m x+ \\
& C=0.75 T+12.00
\end{aligned}
$$

$$
\text { SLOPE DOESNTT CHANGE }=\text { CONSTANT CHANGE }
$$

(ALWAYS 0.75)
d) How can you tell from the table that the graph represents a linear relation?

Constant change \Rightarrow Results in a strakhit LINE GRAPH
Linear Relations
The cost for a car rental is $\$ 60$, plus $\$ 20$ for every 100 km driven. The independent (x) variable is the distance driven and the \qquad depend
this is a relation. There are several ways to identify that this is
A. Table of Values

CONSTANT
CONSTANT

* because both the indep. \& dep. variables change by tire SAME AMOUNT (REMAIN CONSTANT), THIS IS A LUNAR RELATIoN

For a linear relation, a constant change in the independent variable results in a constant change in the dependent variable.

B. A set of ordered pairs

C. A graph

Car Rental Cost

By analyzing a table, set of ordered pairs or graph, we can determine the \qquad Of CHANGF of the linear relation. The ratio can be set up as follows:
(slope)
$M=\frac{\text { change in dependent variable }}{\text { change in independent variable }}=(x) \frac{\text { RISE }}{(x)}=\frac{\$ 20}{100 \mathrm{~km}}=\$ 0.20 / \mathrm{km}$
The rate of change can also be determined from the equation of the linear function:

Examples:

2) Graph these relations. Are they linear? How do you know?
a) $y=2 x-1$

$+2$| | x |
| :---: | :---: |
| | y |
| | 0 |
| | 2 |
| | 4 |

Constant chance so, LINEAR I

$$
\begin{aligned}
& y=2(0)-1=0-1=-1 \\
& y=2(2)-1=4-1=3 \\
& y=2(4)-1=8-1=7
\end{aligned}
$$

b) $y=-x^{2}+2$

NOT CONSTANT SO NOT LINEAR

\mathbf{x}	\mathbf{y}
2 ζ	1
	2

$$
\begin{aligned}
y & =-0^{2}+2 \\
& =0+2 \\
y & =-(1)^{2}+2 \\
& =-1+2 \\
y & =-(2)^{2}+2 \\
& =-4+2
\end{aligned}
$$

not linear
B / C NOT A STrAIGHT line
3) A hot tub contains 1000 L of water. Graph A represents the hot tub being filled at a constant rate. Graph B represents the hot tub emptied at a constant rate.

Graph A
Filling a Hot Tub

Graph B
Emptying a Hot Tub

a) Identify the dependent and independent variables.

$$
\begin{aligned}
& \text { Plume }(L) \quad \longrightarrow \text { time }(\mathrm{min}) \\
& \text { volundent and independent variables. }
\end{aligned}
$$

b) Determine the rate of change of each relation, and then describe what it represents.

$$
(=S L O P E)
$$

GrAPH A

$$
m=\frac{800 \mathrm{~L}}{40 \mathrm{~min}}
$$

FILING AT A RATE of 20 litres every minute.

GrAPH B
$-\frac{1600 \mathrm{~L}}{40 \mathrm{~min}}$
$=-40 \mathrm{~L}$ page 308 43, 8, 12, 1, 4, 17 min

