Lesson 5 - Sec. 7.6: Properties of Systems of Linear Equations
When you attempt to solve a linear system of two equations in two variables, there are only three different possibilities. You can determine the number of solutions using different methods.

Possible Solutions for a Linear System

1) Intersecting Lines

$$
\begin{aligned}
& \text { I solution } P(x, y) \\
& \text { The lines }(y=m x+b) \\
& \text { - different slopes } \\
& \text { - different } y \text {-int. }
\end{aligned}
$$

2) Parallel Lines

No solution
The lines

- same slope
- different y-int
* inconsistent system

3) Coincident Lines

Infinite solutions

- same line
- same slope
- same y-int.

Example 1: Determine the number of solutions of each linear system.
a)

$$
\begin{aligned}
& x+y=-2 \\
& -2 x-2 y=4 \\
& +2 x \quad 2 x \\
& \frac{-2 y}{-2}=\frac{2 x}{-2}+\frac{4}{-2} \\
& y=-x-2
\end{aligned}
$$

* get into $y=m x+b$

$$
\begin{aligned}
x+y & =-2 \\
-x & =-x \\
y & =-x-2
\end{aligned}
$$

same line

Coincident lines w/ infinite solutions
b)

$$
\begin{array}{rl}
2 x+6 y & =-10 \\
-2 x-y & =-1 \\
+2 x \quad+2 x \\
-y & =\frac{2 x-1}{-1}-1 \\
-1 & y=-2 x+1
\end{array}
$$

$$
\begin{aligned}
2 y+6 y & =-10 \\
-2 x & -2 x \\
\frac{6 y}{6} & =\frac{-2 x}{6}-\frac{10}{6} \\
y & =\frac{-x}{3}-\frac{5}{3}
\end{aligned}
$$

Intersecting Lines \rightarrow I solution
c) $3 x+y=-1$

$$
\begin{aligned}
& \begin{array}{l}
3 x+y=-1 \\
-6 x-2 y=12 \\
+6 x
\end{array} \quad-6 x \quad-3 x+y=-1 \\
& -3 x \\
& -\frac{2 y}{-2}=\frac{6 x}{-2}+\frac{12}{-2} \quad y=-3 x-1 \\
& y=-3 x-6 \quad \text { same slope }
\end{aligned}
$$

$$
7
$$

$$
\begin{array}{ll}
y=2 x+4 & m=2 \\
& b=4
\end{array}
$$

Example 2: Given the equation $-2 x+y=4$, write another linear equation that will form a linear system with:
a) Exactly one solution \rightarrow different m, b
b) No solution
c) Infinite solutions
a) choices are endless

$$
y=3 x-1
$$

$$
y=1000000 x+9001
$$

b) same slope

$$
y=2 x+9
$$

$$
\text { or } y=2 x-5
$$

c) same line $y=2 x+4$.

