$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Lesson 6: Point-Slope Form of a Linear Equation - 2
More Examples:

1) Write an equation for the line (in both point-slope and slope-intercept form) that passes through ($1,-1$) and is:

$$
x_{1} \text { 化 }
$$

a) parallel to the line $y=\frac{2}{3} x-5$

$$
\begin{aligned}
& m=\frac{2}{3} \\
& y+1=\frac{2}{3}(x-1) \\
& y+1=\frac{2}{3} x-\frac{2}{3} \\
& -1 \\
& y=\frac{2}{3} x-\frac{5}{3}
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right) \quad y+1=\frac{2}{3}(x-1)
$$

$$
y+1=\frac{2}{3}(x-1) \quad y+1=\frac{2}{3} x-\frac{2}{3}-1
$$

$-\frac{2}{3}-1=\frac{-2}{3}-\frac{3}{3}=\frac{-5}{3}$
point-slope
b) perpendicular to the line $y=\frac{2}{3} x-5$

$$
\begin{array}{cc}
\begin{array}{c}
p(1,-1) \quad m=-\frac{3}{2} \\
x_{1} y_{1}
\end{array} & y+1=-\frac{3}{2}(x-1) \\
y-y_{1}=m\left(x-x_{1}\right) & y+1=\frac{-3}{2} x+\frac{3}{2}-1 \\
y+1=\frac{-3}{2}(x-1) & -1 \\
\text { point slope } & y=\frac{-3}{2} x+\frac{1}{2} \\
\frac{3}{2}-1=\frac{3}{2}-\frac{2}{2}=\frac{1}{2} & \text { slope int. }
\end{array}
$$

2) Write an equation for the line (in both point-slope and slope-intercept form) that passes through $(2,-3)$ and is:
a) parallel to the line $y=3 x+5$

$$
\begin{gathered}
P\left(\begin{array}{c}
x_{1}, y_{1} \\
2,-3) \quad m=3 \\
y+3=3(x-2) \\
y+3= \\
-3 x-6 \\
y= \\
y=3 x-9 \\
\\
\text { slope-int }
\end{array}\right. \text {-3 }
\end{gathered}
$$

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y+3=3(x-2) \\
\text { point-slope }
\end{array}
$$

b) perpendicular to the line $y=3 x+5$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y+3=\frac{-1}{3}(x-2) \\
\text { point-slope } \\
\frac{2}{3}-3=\frac{2}{3}-\frac{9}{3}=-\frac{7}{3}
\end{gathered}
$$

$$
\begin{aligned}
& m=\frac{-1}{3} \quad P(2,-3) \\
& y+3=-\frac{1}{3}(x-2) \\
& y+3=-\frac{1}{3} x+\frac{2}{3}-3 \\
&-3 \\
& y=-\frac{1}{3} x-\frac{7}{3} \\
& \text { slope-int. }
\end{aligned}
$$

