\qquad

Lesson 8: Factor Difference of Squares

A special type of polynomial that has two squares joined by a subtraction sign also knows as a "difference of squares" can be factored with two conjugate binomials.

To find the factors take the square root of each of the terms. One binomial you add the roots, the other you subtract.

$$
m^{2}-n^{2}=(m+n)(m-n)
$$

Examples: Factor.

1) $x^{2}-9=(x)^{2}-(3)^{2}=(x-3)(x+3)$
2) $x^{2}-36=(x+6)(x-6)$
3) $64 a^{2}-49=(8 a+7)(8 a-7)$
4) $16 x^{2}-25 y^{2}=(4 x+5 y)(4 x-5 y)$

$$
\text { 5) } \begin{aligned}
x^{4}-81 & =\left(x^{2}+9\right)\left(x^{2}-9\right) \\
& =\left(x^{2}+9\right)(x+3)(x-3)
\end{aligned}
$$

\}Always look for a GCF!
6) $\frac{8 x^{2}}{8}-\frac{32}{8}=8\left(x^{2}-4\right)=8(x+2)(x-2)$ $G C F=8$

$$
\begin{aligned}
& \text { 7) } \frac{x y^{2}}{x}-\frac{x^{3}}{x}=x\left(y^{2}-x^{2}\right)=x(y+x)(y-x) \\
& G C F=x
\end{aligned}
$$

8) $\frac{3 a^{3}}{3 a}-\frac{12 a b^{2}}{3 a}=3 a\left(a^{2}-4 b^{2}\right)=3 a(a+2 b)(a-2 b)$ $G C F=3 a$
9) $x^{4}-12 x^{2}-64=\left(x^{2}+4\right)\left(x^{2}-16\right)$ factored

$$
=\left(x^{2}+4\right)(x+4)(x-4)
$$

164
232
Worksheet

88

