Unit 4: Equations Name Project

Name _____

Big Ideas:

✓ Continuous linear relationships can be identified and represented in many connected ways to identify regularities and make generalizations

Curricular competency being assessed: Communicating & Representing

Content

✓ Multi-step variable equations

BEGINNING	DEVELOPING	PROFICIENT	EXTENDING
		I can	
		Solve literal equations for one variable	
		 Clearly communicate algebraic skills required to rearrange equations involving variables 	
		Clearly communicate the intention of a project in a professional manner	
		Explain the usefulness of rearranging formula and relate this skill to real world situations.	

Task

In this project, you are going to rearrange formulas to create a literal equations poster of your name. You must include the original formulas, your work showing the rearrangement of each formula, and the final formulas used to create your name. To conclude, you will reflect on why being able to rearrange formula is an important math skill and how it can be applied to "real world" situations.

Guidelines

- You must have at least 10 letters on your poster that can be solved using 10 equations. You can use a combination of your first, middle and last name.
- You may use a formula more than once if you are solving for a different variable. For example: If your first name is "Beth" you could use V = Bh to solve for the "B" in Beth, and then use the same formula to solve for "h".
- You cannot use the same rearranged formula unless you are not counting it in the 10 required equations. For example: If your name is "Ana", you need to choose two **different** formulas for the letter "a".
- On your poster you also must draw, cutout or print a minimum of two representations (pictures) of who you are.
- Your poster and accompanying work must be **<u>clearly</u>** communicated and professionally presented. Anyone should be able to clearly follow your line of thinking.

Equations

You will have 46 different equations to choose from to create your poster.

Please note the breakdown of letter options when choosing your name:

A:8	B:14	C:6	D:1	E:2	F:1	G:2	H:12	I:3	J:1	K:2	L:5	M:5
N:2	0:0	P:3	Q:1	R:10	S:3	T:5	U:1	V:2	W:5	X:4	Y:1	Z:1

For O: use #20 – Linear equation in one variable (the zero can act as the letter O). *NOTE: As there is no rearrangement, this letter will not count for the 10 required equation.*

For example: If your name is JOSEPH KIDD that name does meet the 10-letter requirement; however, it does NOT meet the 10 different equations requirement. This name contains an O which does not have an equation to be solved and contains two Ds (there is only one equation for D); therefore, it would only count as 8 letters and a middle name would need to be added.

Final Thoughts

- Do not forget to attach your reflection.
- Due date: ______

Literal Equations

1. $A = \ell w$	Area of a rectangle
2. $A = \frac{1}{2} bh$	Area of a triangle
3. $A = \pi r^2$	Area of a circle
4. $A = \frac{1}{2}h(b_1 + b_2)$	Area of a trapezoid
5. $C = \pi d$	Circumference of a circle
6. C = $2\pi r$	Circumference of a circle
7. $V = \ell wh$	Volume of a Rectangular Prism
8. V = $\pi r^2 h$	Volume of a Right Circular Cylinder
9. $V = \frac{1}{3}Bh$	Volume of a Right Square Pyramid
10. V = $\frac{1}{3}\pi r^2 h$	Volume of a Right Circular Cone
11. I = prt	Simple Interest
12. d= rt	Distance formula
13. y = mx + b	Slope Intercept Form
14. $a^2 + b^2 = c^2$	Pythagorean Theorem
15. P = 4s	Perimeter of a square
16. V = Bh	Volume of a prism
17. E = IR	Voltage in an electric circuit
18. a + b + c = 180	Measure of angles in a triangle
19. $P = I^2 R$	Power in an electric circuit
20. $ax + b = 0$	Linear equation in one variable
21. $s = \frac{1}{2}gt^2$	Distance
22. K = $\frac{1}{2}$ m v^2	Energy
23. $P = 2\ell + 2w$	Perimeter of a rectangle

24. ax + by = c	Linear equation in two variables
25. V = $\frac{KT}{P}$	Volume of a gas
26. $x = \frac{a+b}{2}$	Average of two numbers
27. D = $\frac{C-s}{n}$	Depreciation
28. $F = \frac{9}{5}C + 32$	Celsius/Fahrenheit Conversion
29. E = VIT	Electrical Energy
30. J = mhg	Joules (energy)
31. 180(n – 2) = s	Sum of angles formula
32. q = mc	Heat transferred
33. $v^2 = u^2 + 2as$	Velocity and Acceleration
34. S = LA + 2B	Surface Area of a Rectangular Prism
35. $S = 2bh + 2bw + 2hw$	Surface Area of a Rectangular Prism
36. S = $2\pi rh + 2B$	Surface Area of a Cylinder
$37. S = \frac{1}{2}P\ell + B$	Surface Area of a Square Pyramid
38. A = bh	Area of a Parallelogram
39. $E = mc^2$	Energy
40. $v = \frac{w}{q}$	Potential Difference
41. $C = (F - 32)\frac{5}{9}$	Celsius/Fahrenheit Conversion
42. $y = a(x - h)^2 + k$	Vertex Form
43. $S = \frac{E^2}{Z}$	Apparent Power
44. $I = \frac{E}{R}$	Direct Current
45. $A = P + Prt$	Amount at Simple Interest
46. W = $\frac{J}{S}$	Power